1,051 research outputs found

    Mission and Vehicle Control of Marine and Aerial Vehicles

    Get PDF

    Development and text of the DELFIMx catamaran

    Get PDF

    A Microscopic-view Infection Model based on Linear Systems

    Get PDF
    Understanding the behavior of an infection network is typically addressed from either a microscopic or a macroscopic point-of-view. The trade-off is between following the individual states at some added complexity cost or looking at the ratio of infected nodes. In this paper, we focus on developing an alternative approach based on dynamical linear systems that combines the fine information of the microscopic view without the associated added complexity. Attention is shifted towards the problems of source localization and network topology discovery in the context of infection networks where a subset of the nodes is elected as observers. Finally, the possibility to control such networks is also investigated. Simulations illustrate the conclusions of the paper with particular interest on the relationship of the aforementioned problems with the topology of the network and the selected observer/controller nodes

    Fault Detection for Cyber-Physical Systems: Smart Grid case

    Get PDF
    The problem of fault detection and isolation in cyber-physical systems is growing in importance following the trend to have an ubiquitous presence of sensors and actuators with network capabilities in power networks and other areas. In this context, attacks to power systems or other vital components providing basic needs might either present a serious threat or at least cost a lot of resources. In this paper, we tackle the problem of having an intruder corrupting a smart grid in two different scenarios: a centralized detector for a portion of the network and a fully distributed solution that only has limited neighbor information. For both cases, differences in strategies using Set-Valued Observers are discussed and theoretical results regarding a bound on the maximum magnitude of the attacker’s signal are provided. Performance is assessed through simulation, illustrating, in particular, the detection time for various types of faults in IEEE testbed scenarios

    A general discrete-time method to achieve resilience in consensus algorithms

    Get PDF
    In this paper, we approach the problem of a set of network agents reaching resilient consensus in the presence of a subset of attacked nodes. We devise a generalized method, with polynomial time complexity, which receives as input a discrete-time, synchronous-communication consensus algorithm, a dynamic network of agents, and the maximum number of attacked nodes. The distributed algorithm enables each normal node to detect and discard the values of the attacked agents while reaching the consensus of normal agents for the input consensus algorithm. Hence, the proposed method adds an extra layer of resilience to a given discrete-time and synchronous-communication consensus algorithm. Finally, we demonstrate the effectiveness of the method with experimental results, showing some attack circumstances which we can counter, where the state-of-the-art methods fail
    corecore